
Copyright by Hukseflux | manual v2401 | www.hukseflux.com | info@hukseflux.com

PROGRAMMING MANUAL
SR300-D1 | SR200-D1 | SR100-D1
Industrial pyranometers

Hukseflux
Thermal Sensors

compliant with IEC
61724-1 Class A

http://www.hukseflux.com/
mailto:info@hukseflux.com?subject=manual
http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 2/37

Cautionary statements

Cautionary statements are subdivided into four categories: danger, warning, caution and
notice according to the severity of the risk.

 DANGER

Failure to comply with a danger statement will lead to death or serious

physical injuries.

 WARNING

Failure to comply with a warning statement may lead to risk of death or

serious physical injuries.

 CAUTION

Failure to comply with a caution statement may lead to risk of minor or

moderate physical injuries.

 NOTICE

Failure to comply with a notice may lead to damage to equipment or may

compromise reliable operation of the instrument.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 3/37

Contents

Cautionary statements 2
Contents 3
List of symbols 4
Introduction 5
1 Modbus over RS-485 6
1.1 Serial communication settings 6
1.2 Modbus communication settings 7
1.3 Modbus request structure 7
1.4 Supported Modbus function codes 8
2 Hukseflux Modbus registers 19
2.1 Register access 19
2.2 Register addresses 19
2.3 Register data types 20
2.4 Register list 28
Appendix A – Pseudocode conventions 33

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 4/37

List of symbols

Quantities Symbol Unit

- - -

Subscripts

-

Acronyms

CRC Cyclic Redundancy Check
LSW Least-Significant Word
MSW Most-Significant Word
PDU Protocol Data Unit
SCADA Supervisory Control And Data Acquisition
TIA Telecommunications Industry Association
UART Universal Asynchronous Receiver-Transmitter

Modbus® is a registered trademark of Schneider Electric, licensed to the Modbus Organization, Inc.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 5/37

Introduction

This document describes the specifics of the Modbus RTU interface of Hukseflux industrial
pyranometers. This includes supported Modbus function codes, data types and behaviour
specific to Hukseflux industrial series pyranometers. General information on the Modbus
RTU protocol can be found in the “Modbus Protocol Specification” and the “Modbus Serial
Line Protocol and Implementation Guide” found on http://www.modbus.org.

The registers of the individual instruments are listed in the respective instrument register
lists.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 6/37

1 Modbus over RS-485

Hukseflux Modbus instruments support communication over an RS-485 (formally
TIA-485-A) network. Information of the implementation of Modbus and other relevant
knowledge to support the use of a Hukseflux Modbus instrument is given in the following
paragraphs.

1.1 Serial communication settings

Hukseflux Modbus instruments support a range of serial communication settings, as
listed below.

SUPPORTED SERIAL COMMUNICATION SETTINGS
Setting Valid configuration
Baud rate 9600 – 115000, configurable in steps of 100
Parity bit Even (E), odd (O), none (N)
Number of stop bits 1, 2

Configuration is denoted as <number of data bits><parity bit><number of stop
bits>. For instance 8N2, which means 8 data bits, no parity bit, 2 stop bits.

The default factory configuration of the instrument is 19200 baud, 8E1, which means 8
data bits are used, an even number of ones in the data sets the parity bit to 1, and a
single stop bit is used.

Baud rates are settable in steps of 100, but it is strongly recommended to use one of the
standard baud rate settings of 9600, 19200, 38400 or 115000 to avoid misconfigured
networks.

An example of a valid UART frame for sending one byte is given below. Note that the bits
appended with an ‘ are optional bits; with parity set to none, or stop bits set to 1, those
respective bits will not be included in the UART frame.

Figure 1.1.1: An example UART frame.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 7/37

As can be seen, the start bit (always 0) signals the start of the frame, followed by eight
data bits (0xD2 in this case). Parity is set to even, so the value is 1 for these data bits.
Lastly, the stop bits are always high, before the line returns to an idle state.

1.2 Modbus communication settings

Modbus over RS-485 acts like a single-client, multiple-server network, where the client
sends a request to a specific server and the server responds with the expected message.
Hukseflux Modbus instruments always act as servers on the network.

Valid device addresses fall in the range of 1 – 247. Each device on the bus, both client
and server(s), needs to be configured with the same serial communication settings.

The default factory address of a Hukseflux Modbus instrument is 1.

NOTICE

Each device on the RS-485 network should have the same serial communication
settings.

NOTICE

Each Modbus server device on the RS-485 network should have a unique device
address.

1.3 Modbus request structure

1.3.1 Modbus frame

The standard Modbus frame consists of a Protocol Data Unit (PDU) that defines:
- A function code to indicate the type of Modbus request
- Data

For use in serial networks, the PDU is packed with additional fields into a Modbus Serial
Line PDU that defines:
- A device address for addressing
- A cyclic redundancy check field for error detection

The structure of the Modbus Serial Line PDU is as follows:

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 8/37

Modbus request
Device
address

Function code Data CRC

Integer device
address
between 1 and
247

Indication of
the action to
perform

Any data needed to perform the
Modbus function, optional

Error checking

1 byte 1 byte N bytes 2 bytes

The CRC check uses the CRC-16 algorithm as described in Appendix B of the Modbus
over Serial Line Specification and Implementation Guide v1.02

Example

For example, a valid Modbus request could look like this:

Modbus request
Device
address

Function code Data CRC

0x10 0x03 0x0A54 0x0004 0x4005
1 byte 1 byte 2 bytes 2 bytes

Note all values in the table are in hexadecimal notation

1.4 Supported Modbus function codes

This paragraph explains the purpose and use of the Modbus function codes that are
supported by Hukseflux Modbus instruments. Each paragraph explains a function code
and gives an example request and response. The possible error responses are also
described.

MODBUS FUNCTION CODES

FUNCTION CODE DESCRIPTION
0x03 Read holding registers
0x04 Read input registers
0x06 Write single register
0x10 Write multiple registers
0x08 Diagnostics

When a request is sent, the response of the instrument will always start with the Modbus
instrument's address, then the requested function code.

The instrument does not distinguish between input registers and holding registers, both
function code 0x03 and 0x04 can be used to read the same 16-bit register, i.e. the input
registers and holding registers share the same address space. Hukseflux Modbus

http://www.hukseflux.com/
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf

Programming manual industrial series pyranometers v2401
 9/37

instruments do not use coils (function code 0x01) or discrete inputs (function code
0x02).

Whenever an error response is generated, the most significant bit of the function code is
set, e.g. for an error during function code 0x03, the function code in the response will be
0x83.

The exception codes supported by Hukseflux Modbus instruments are:

Supported exception codes
Exception code Name Description
0x01 Illegal Function The requested function code is not

supported by the Hukseflux Modbus
instrument.

0x02 Illegal Data Address The data address received is not allowed
by the Hukseflux Modbus instrument, for
instance when requesting data from a
non-existing data address, or when
reading multiple registers and part of the
address range does not exist.

0x03 Illegal Data Value The supplied data fields are illegal in
context of the request, for instance if the
request supplies the wrong number of
data bytes.
Note: this exception is specifically NOT
used to indicate values not supported by
the Hukseflux Modbus instrument, for
that, exception code 0x04 is used.

0x04 Server Device Failure Executing the requested Modbus function
failed, for instance because a data value
not supported by the Hukseflux Modbus
instrument was supplied in the request.

Another case in which this exception code
might be returned is in the case of a
communication failure with one of the
internal sensors.

0x06 Server Device Busy The Hukseflux Modbus instrument is
already processing another function.
Repeat the request later.

1.4.1 0x03 - Read Holding Registers

This function code is used to read a the contents of a contiguous block of holding
registers in a Hukseflux Modbus instrument. For Hukseflux Modbus instruments, holding

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 10/37

registers and input registers are treated in the same way; this means that both function
code 0x03 and 0x04 can be used to read the same group of registers.

Each register is packed as two bytes, the first byte contains the high order bits, the
second byte contains the low order bits.

Modbus request
Device
address

Function code Read start
address

No. of
registers

CRC

1 – 247 0x03 0x0000 –
0xFFFF

0x0000 –
0xFFFF

Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Modbus response
Device
address

Function code Data CRC

1 – 247 0x03 0x0000 –
0xFFFF

… Valid CRC16

1 byte 1 byte N x 2 bytes … 2 bytes

Error response
Device
address

Function code Exception code CRC

1 – 247 0x83 01, 02, 03, 04 or 06 Valid CRC16
1 byte 1 byte 1 byte 2 bytes

Examples

Example request, note all values in the tables below are in hexadecimal notation:

Example Modbus request
Device
address

Function code Read start
address

No. of
registers

CRC

0x01 0x03 0x000A 0x0002 0x09E4
Request to
device 0x01

Perform
function code
0x03 (Read
Holding
Registers)

Start reading at
address
0x000A

Read 2
registers

Valid CRC for
this message

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 11/37

Example response:

Example Modbus response
Device
address

Function code Data CRC

0x01 0x03 0x010A 0x0402 0x35E7
Response from
device 0x01

Performed
function code
0x03 (Read
Holding
Registers)

Data read from
register
0x000A

Data read from
register
0x000B

Valid CRC for
this message

Example error response:

Example Error response
Device
address

Function code Exception code CRC

0x01 0x83 0x01 0xF080
Response from
device 0x01

Error
performing
function code
0x03 (Read
Holding
Registers)

Exception code 01 Valid CRC for
this message

1.4.2 0x04 - Read Input Registers

This function code is used to read a the contents of a contiguous block of input registers
in a Hukseflux Modbus instrument. For Hukseflux Modbus instruments, holding registers
and input registers are treated in the same way; this means that both function code 0x03
and 0x04 can be used to read the same group of registers.
Each register is packed as two bytes, the first byte contains the high order bits, the
second byte contains the low order bits.

Request:

Modbus request
Device
address

Function code Read start
address

No. of
registers

CRC

1 – 247 0x04 0x0000 –
0xFFFF

0x0000 –
0xFFFF

Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 12/37

Modbus response
Device
address

Function code Data CRC

1 – 247 0x04 0x0000 –
0xFFFF

… Valid CRC16

1 byte 1 byte N x 2 bytes … 2 bytes

Error response
Device
address

Function code Exception code CRC

1 – 247 0x84 01, 02, 03, 04 or 06 Valid CRC16
1 byte 1 byte 1 byte 2 bytes

Examples

Example request, note all values in the tables below are in hexadecimal notation:

Example Modbus request
Device
address

Function code Read start
address

No. of
registers

CRC

0x01 0x04 0x000A 0x0002 0xC951
Request to
device 0x01

Perform
function code
0x04 (Read
Input
Registers)

Start reading at
address
0x000A

Read 2
registers

Valid CRC for
this message

Example response:

Example Modbus response
Device
address

Function code Data CRC

0x01 0x04 0x010A 0x0402 0xF552
Response from
device 0x01

Performed
function code
0x04 (Read
Input
Registers)

Data read from
register
0x000A

Data read from
register
0x000B

Valid CRC for
this message

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 13/37

Example error response:

Example Error response
Device
address

Function code Exception code CRC

0x01 0x84 0x01 0xC082
Response from
device 0x01

Error
performing
function code
0x04 (Read
Input
Registers)

Exception code 01 Valid CRC for
this message

1.4.3 0x06 - Write Single Register

This function code is used to write data to a single 16-bit register in a Hukseflux Modbus
instrument.
The 16-bit data to write is packed as two bytes, the first byte contains the high order
bits, the second byte contains the low order bits.

Modbus request
Device
address

Function code Write address Write data CRC

1 – 247 0x06 0x0000 –
0xFFFF

0x0000 –
0xFFFF

Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Modbus response
Device
address

Function code Write address Write data CRC

1 – 247 0x06 0x0000 –
0xFFFF

0x0000 –
0xFFFF

Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Error response
Device
address

Function code Exception code CRC

1 – 247 0x86 01, 02, 03, 04 or 06 Valid CRC16
1 byte 1 byte 1 byte 2 bytes

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 14/37

Examples

Example request, note all values in the tables below are in hexadecimal notation:
Modbus request
Device
address

Function code Write address Write data CRC

 0x01 0x06 0x000A 0xA5A5 0xE312
Request to
device 0x01

Perform
function code
0x06 (Write
Single
Register)

Write data at
address
0x000A

Write 0xA5A5 Valid CRC for
this message

Example response, note the valid response to a function code 0x06 request is an echo of
the request itself:
Modbus response
Device
address

Function code Write address Write data CRC

 0x01 0x06 0x000A 0xA5A5 0xE312
Request to
device 0x01

Performed
function code
0x06 (Write
Single
Register)

Write data at
address
0x000A

Write 0xA5A5 Valid CRC for
this message

Example error response:
Error response
Device
address

Function code Exception code CRC

 0x01 0x86 0x02 0xA1C3
Response from
device 0x01

Error
performing
function code
0x06 (Write
Single
Register)

Exception code 02 Valid CRC for
this message

1.4.4 0x10 - Write Multiple Registers

This function code is used to write a contiguous block of registers in a Hukseflux Modbus
instrument. The maximum number of registers that can be written is 123.
Each register is packed as two bytes, the first byte contains the high order bits, the
second byte contains the low order bits.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 15/37

Modbus request
Device
address

Function
code

Write
start
address

No. of
registers

Byte
count

Data N CRC

1 – 247 0x10 0x0000 –
0xFFFF

1 – 123
(N
registers)

Amount
of bytes
following
this byte
(2 x N)

Data Valid
CRC16

1 byte 1 byte 2 bytes 2 bytes 1 byte N x 2
bytes

2 bytes

Modbus response
Device
address

Function code Write start
address

No. of
registers

CRC

1 – 247 0x10 0x0000 –
0xFFFF

1 - 123 Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Error response
Device
address

Function code Exception code CRC

1 – 247 0x90 01, 02, 03, 04 or 06 Valid CRC16
1 byte 1 byte 1 byte 2 bytes

Examples

Modbus request
Device
address

Function
code

Write
start
address

No. of
registers

Byte
count

Data N CRC

0x01 0x10 0x0040 0x0002 0x04 0x55AA 0xAA55
Request to
device at
0x01

Perform
function
code 0x10
(Write
Multiple
Registers)

Start
writing at
register
0x0040

Write 2
registers

4 bytes
follow
this byte

Write
0x55AA

Write
0xAA55

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 16/37

Modbus response
Device
address

Function code Write start
address

No. of
registers

CRC

0x01 0x10 0x0040 0x0002 0x1C40
Response from
device at 0x01

Performed
function code
0x10 (Write
Multiple
Registers)

Started writing
at register
0x0040

Wrote 2
registers

Valid CRC for
this message

Error response
Device
address

Function code Exception code CRC

0x01 0x90 0x04 0xC34D
Response from
device at 0x01

Error
performing
function code
0x10 (Write
Multiple
Registers)

Exception code 04 Valid CRC for
this message

1.4.5 0x08 - Diagnostics

This function code is used to access a series of tests between for checking the
communication between devices on the bus, or for checking internal error conditions. The
function code uses two-byte sub-functions to determine the type of test to perform.
Each register is packed as two bytes, the first byte contains the high order bits, the
second byte contains the low order bits.

The supported sub-function codes for Hukseflux Modbus instruments are:

Diagonostic sub-function codes
Sub-function
code

Name Description

0x0A Clear Counters
and Diagnostics
Register

Clears all diagnostic counters and the diagnostics
register.

0x0B Return Bus
Message Count

Requests the number of Modbus requests the
instrument has detected on the communications
bus since its last restart, counter overflow, or clear
counters request. This is the number of requests to
all devices, not just this device.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 17/37

0x0C Return
Communication
Error Count

Requests the number of CRC, framing, overrun,
and incomplete message errors the instrument has
detected since its last restart, counter overflow, or
clear counters request.

0x0D Return
Exception Error
Count

Requests the number of exception responses
returned by the instrument since its last restart,
counter overflow, or clear counters request.

0x0E Return Server
Message Count

Requests the number of requests addressed to the
instrument since its last restart, counter overflow,
or clear counters request.

0x0F Return Server
No Response
Count

Requests the number of requests the instrument
has not responded to, either with a normal
response or an error response, since its last
restart, counter overflow, or clear counters
request.

0x10 Return Server
NAK Count

Requests the number of requests the instrument
has responded to with a "not acknowledged" (NAK)
response since its last restart, counter overflow, or
clear counters request.

0x11 Return Server
Busy Count

Requests the number of requests the instrument
has responded to with a "Server Busy" exception
response since its last restart, counter overflow, or
clear counters request.

0x12 Return Bus
Character
Overrun Count

Requests the number of requests addressed to the
instrument that the instrument could not handle
because the instrument received characters faster
than they could be stored.

The diagnostis function request are:

Modbus request
Device
address

Function code Sub-function
code

Data CRC

1 - 247 0x08 0x000A -
0x0012

0x0000
(for all
supported sub-
function codes)

Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Modbus response
Device
address

Function code Write address Write data CRC

1 - 247 0x08 0x000A -
0x0012

0x0000 -
0xFFFF

Valid CRC16

1 byte 1 byte 2 bytes 2 bytes 2 bytes

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 18/37

Error response
Device
address

Function code Exception code CRC

1 - 247 0x88 01, 03, 04 or 06 Valid CRC16
1 byte 1 byte 1 byte 2 bytes

Examples

Modbus request
Device
address

Function code Sub-function
code

Data CRC

0x01 0x08 0x000E 0x0000 0xC881
Request to
device 0x01

Perform
function code
0x08
(Diagnostics)

Perform sub-
function
0x000E
(Return Server
Message
Count)

Valid data field
value for this
sub-function
code

Valid CRC for
this message

Modbus response
Device
address

Function code Write address Write data CRC

0x01 0x08 0x000E 0x0040 0x3880
Response from
device 0x01

Performed
function code
0x08
(Diagnostics)

Performed sub-
function
0x000E (Return
Server Message
Count)

64 messages
since last
restart /
counter reset

Valid CRC for
this message

Error response
Device
address

Function code Exception code CRC

0x01 0x88 0x03 Valid CRC16
Response from
device 0x01

Error
performing
function code
0x08
(Diagnostics)

Exception code 03 2 bytes

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 19/37

2 Hukseflux Modbus registers

2.1 Register access

Register may be readable and/or writeable. The register access may be different
depending on the instruments operating mode.

REGISTER ACCESS

ACCESS SPECIFIER DESCRIPTION
R- Readable in measurement mode
-W Writeable in measurement mode

2.2 Register addresses

Registers are grouped by functionality. Groups have a size of 0x0080 (128) register
addresses or a multiple thereof. Not all addresses within a group are used.

The register address of a register follows from the group start address and the register
offset. The upper 9 bits of the register address are determined by the group start
address, the lower 7 bits of the are determined by the register offset (as illustrated in
figure xxx). The register address may be determined by performing a bitwise or
operation on the register group start address and the register offset.

Figure 2.2.1: Register address constructed from group start address and register offset.

0bgggg_gggg_grrr_rrrr

g: group address bit
r: register offset bit

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 20/37

2.3 Register data types

All datatypes are big endian unless stated otherwise.

REGISTER DATA TYPES

DATA
TYPE

REGISTER (BYTE)
COUNT

DESCRIPTION

bool 1 (2) Boolean TRUE or FALSE value
u16 1 (2) Unsigned 16-bit integer
i16 1 (2) Signed 16-bit integer
u32 2 (4) Unsigned 32-bit integer
i32 2 (4) Signed 32-bit integer
u64 4 (8) Unsigned 64-bit integer
string32 16 (32) UTF-8 encoded, 32 character string with 2

characters per Modbus register. The byte order is
‘BADCFE’.

float 2 (4) Single-precision floating-point format (IEEE 754
binary32).

statistic 8 (16) A struct containing 4 floating point numbers
corresponding to the minimum, maximum, average
and standard deviation. Accumulation is reset upon
reading.

NOTICE

32-bit parameters located in two 16-bit Modbus registers must be read in a
single Modbus request to guarantee coherence of these two registers. Always
use function code 0x10 when reading a data type consisting of multiple 16 bit

registers.

In the examples, the pseudocode conventions as described in Appendix A – Pseudocode
conventions will be used.

The Modbus specification does not define any data types, leaving the interpretation of the
16-bit values in the registers up to the user. While explaining the various data types
defined by Hukseflux, u16 and u32 will be used for any raw data read from a Modbus
register that needs to be processed to another data type, because the unsigned integer
data types contain the raw bit values without any bits that have an additional function
(e.g. a sign bit).

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 21/37

2.3.1 bool

The bool data type is used for simple TRUE or FALSE information.

bool datatype

Register content Description
0x0000 FALSE
0xFFFF TRUE
Anything else Invalid data

Read a bool by reading a 16-bit register and converting the received data as described in
the table above.
Write a bool by writing a 16-bit register and write one of the valid values described in
the table above.

Convert a bool register to a boolean data type as follows:

Pseudocode – convert register value to bool

convert_bool (U16 register_value):
 IF register_value == 0xFFFF THEN
 RETURN true
 ELSE IF register_value == 0x0000 THEN
 RETURN false
 ELSE
 RETURN error
 ENDIF

2.3.2 u16

The u16 data type is used to encode unsigned integers in the range of 0 to 216-1.

Read a u16 by reading one 16-bit register. Write a u16 by writing a single 16-bit register
and write a value between 0 and 216-1.

2.3.3 i16

The i16 data type is used to encode unsigned integers in the range of -215 to 215-1.

The most significant bit gives the sign of the value, where a 0 signifies a positive number
and a 1 signifies a negative number.

Read an i16 by reading one 16-bit register.
Write an i16 by writing a single 16-bit register and write a value between -215 and 215-1.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 22/37

2.3.4 u32

The u32 data type is used to encode unsigned integers in the range of 0 to 232-1.

Read a u32 by reading two 16-bit registers and combining the bytes to a single 32-bit
value.
Write a u32 by splitting a 32-bit value between 0 and 232-1 into two 16-bit parts, then
writing two 16-bit registers.

2.3.5 i32

The i32 data type is used to encode unsigned integers in the range of -231 to 231-1.

The most significant bit gives the sign of the value, where a 0 signifies a positive number
and a 1 signifies a negative number.

Read an i32 by reading two 16-bit registers and combining the bytes to a single 32-bit
value.
Write an i32 by splitting a 32-bit value between -231 and 231-1 into two 16-bit parts,
then writing two 16-bit registers.

2.3.6 u64

The u64 data type is used to encode unsigned integers in the range of 0 to 264-1.

Read a u64 by reading four 16-bit registers and combining the bytes to a single 64-bit
value.
Write a u64 by splitting a 64-bit value between 0 and 264-1into four 16-bit parts, then
writing four 16-bit registers.

u64 as a timestamp

One of the applications of the u64 data type in Hukseflux Modbus instruments is as a
timestamp. The decimal format of this timestamp is 00yyyymmdd. This part is used as the
32 most significant bits in the u64 value. The 32 least significant are set to zero. Convert
a u64 timestamp to a date as follows:

Pseudocode – convert register value to date

convert_date (U64 timestamp):
 year := FLOOR(timestamp{63:32} / 10000)
 month := FLOOR((timestamp{63:32} - year * 10000) / 100)
 day := timestamp{63:32} - month * 100 - year * 10000

 return year, month, day

Convert a date to a timestamp as follows:

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 23/37

Pseudocode – convert values to timestamp

convert_timestamp (year, month, day):
 U32 combined_date := 10000 * year + 100 * month + day
 U64 timestamp := combined_date << 32

 return timestamp

Examples:
Timestamp examples
Year Month Day Combined date

(decimal)
Timestamp
(64-bit hexadecimal)

2024 2 27 20240227 0x0134d76300000000
1994 10 14 19941014 0x0130469600000000

2.3.7 string32

The string32 data type is used to encode a string of 32 ASCII characters. Each ASCII
character has the size of a byte, meaning two ASCII characters can fit in a single 16-bit
Modbus register.

Read a string32 by reading sixteen 16-bit registers and combining the bytes to a 32
ASCII character string.
Write a string32 by splitting a 32 ASCII character string into sixteen 16-bit parts, then
writing sixteen 16-bit registers.

The order of appearance for the ASCII characters in the string matches to the 16-bit
registers as follows:
- The first and second characters ASCII are written in the first 16-bit register, the third
and the fourth in the second 16-bit register, etc.
- The first appearing ASCII character in the string is placed in the least significant byte of
the 16-bit register and the second appearing character is placed in the most significant
byte.

To ensure that old values from string32 register are fully cleared, strings that have less
then 32 ASCII characters should be appended/padded with ASCII NULL characters (0x00
in hexadecimal notation).

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 24/37

Examples:
string32 examples
ASCII string Reordered ASCII string Reordered ASCII string as

16-bit values with NULL
padding

Hello Hukseflux! eHll ouHskfeul!x 0x6548, 0x6c6c, 0x206f,
0x7548, 0x736b, 0x6665,
0x756c, 0x0078, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,
0x0000

Solar radiation
measurement

oSal raridtaoi nemsarumenet 0x6f53, 0x616c, 0x2072,
0x6172, 0x6964, 0x7461,
0x6f69, 0x206e, 0x656d,
0x7361, 0x7275, 0x6d65,
0x6e65, 0x0074, 0x0000,
0x0000

Convert a string of ASCII characters into 16-bit parts of Modbus register data as follows:

Pseudocode – convert string to register data

convert_register_data (string):
 U16 data[16] := 0x00

 FOR i IN CEIL(string.length() / 2):
 data[i] := (string[(2 * i) + 1] << 8) OR (string[2 * i])

 return data

Convert 16-bit parts of Modbus register data into a string of ASCII characters as follows:

Pseudocode – convert register data to string

convert_string32 (U16 register_data[N]):
 STRING32 string

 FOR i IN register_data.length():
 string[2 * i] := register_data{7:0}
 string[(2 * i) + 1] := register_data{15:8}

 return string

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 25/37

2.3.8 float

The float data type is used to encode single-precision decimal numbers and follows the
IEEE 754 standard. A floating point number is represented by a 32-bit value as follows:

float format
Sign (s) Exponent (x) Fraction (f)
bit 31, 1 bit bits 30 - 23, 8 bits bits 22 - 0, 23 bits
Determines the sign of
the number, 0 is a
positive number, 1 is a
negative number

The number to which 2
needs to be raised

Decimal part that is added to one,
starting at a value of 0.5 for the
most significant bit, the dividing
by 2 for each additional bit; so
0.5, 0.25, 0.125, etc.

The value of the encoded number is calculated as follows:

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = −1𝑠𝑠 ∙ 2𝑥𝑥 ∙ (1 + 𝑓𝑓)

Special case: a value of "all 1s" for the exponent signals a NaN (Not a Number) value, i.e.
a value that is undefined as a number, such as the outcome of 0/0. Hukseflux Modbus
instruments do not return NaN values as a valid register values, instead error response
code 4 is used.

Examples:

float examples
Number s x f Result
-1.25 1 01111111 01000000000000000000000
 Negative

number
127 - 127
= 0

0.25 −11 ∙ 20 ∙ (1 + 0.25)
= −1 ∙ 1 ∙ 1.25 = −1.25

103.625 0 10000101 10011110100000000000000
 Positive

number
133-127
= 6

0.5 + 0.0625 + 0.03125 +
0.015625 + 0.0078125 +
0.001953125 =
0.619140625

−10 ∙ 26

∙ (1 + 0.619140625)
= 1 ∙ 64 ∙ 1.619140625
= 103.625

Read a float by reading two 16-bit registers and concatenating the register contents
into a single number, all float registers in Hukseflux Modbus instruments are encoded
high-to-low, so that the first received 16-bit value contains the high part, and the second
received 16-bit value contains the low part of the final 32-bit value.
Write a float by writing two 16-bit registers with a 32-bit float split over 2 16-bit
registers (4 bytes).

Most programming languages support the casting of an unsigned 32-bits integer to float.
In the case the programming language of choice does not support this, convert a 32-bit
integer value to float as follows:

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 26/37

Pseudocode – convert register value to float

convert_float (U32 register_content):
 sign := register_content{31}
 exponent := register_content{30:23}
 fraction := register_content{22:0}

 register_value := -1^sign * 2^exponent * (1 + fraction)

 return register_value

2.3.9 statistic

The statistic data type is used to encode the minimum, maximum, average and
standard deviation for a measurement.

Read a statistic object by reading eight 16-bit registers and combining the bytes into
four float values, each representing one of the statistics (minimum, maximum, average
or standard deviation) for the corresponding measurement. It is also possible to read
only a part of a statistic object by only reading the 16-bit registers corresponding to
the desired part of the statistic object.
Every read (full or partial) of the statistic data type results in all corresponding
statistics being cleared. The consequence of this behaviour is that in order to read an
entire statistic object without any of the statistics being cleared between reads, a
single Modbus request to read multiple registers should be used.

The following paragraphs describe how each of the statistical values within a statistic
data type are calculated.

Minimum
The minimum value statistic is determined by comparing each new measurement to the
minimum value that is currently stored in the statistic object. In case the new
measurement has a lower value than the value stored in the statistic object, the
statistic object will be updated with the new measurement as the new minimum value.

Examples:
Minimum example
Current minimum New measurement New minimum
-10.0 5.0 5.0
-15.0 -17.0 -17.0
20 30.0 20.0

Maximum
The maximum value statistic is determined by comparing each new measurement to the
maximum value that is currently stored in the statistic object. In case the new

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 27/37

measurement has a higher value than the value stored in the statistic object, the
statistic object will be updated with the new measurement as the new maximum
value.

Examples:
Maximum example
Current maximum New measurement New maximum
5.0 10.0 10.0
-17.0 -15.0 -15.0
30.0 20.0 30.0

Average
The average value statistic is determined by dividing the sum of each measurement since
the statistic object was last read by the amount of measurement that were performed
during this time. In case a measurement has not yet been performed since the last read
to this statistics value, the average will be 0.

Examples:
Average example
Sum since last read Measurements

since last read
Average value

1536.19 57 1536.19
57

= 26.9507

-256.8 10 −256.8
10

= −25.68

X 0 0

Standard deviation
The standard deviation statistic is determined in a couple of steps:

Step 1
The average value is determined after a new measurement has been performed. This
value will be referred to as the mean value in the following steps.

Step 2
The mean value is used to calculate the squared deviation from the mean value (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆):

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + (𝑉𝑉 −𝑀𝑀)2

Here, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the previously calculated value of𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑉𝑉 is the new measurement for
which the statistics are being updated and 𝑀𝑀 is the calculated mean value from Step 1.

Step 3
The standard deviation (𝜎𝜎) is calculated:

𝜎𝜎 = �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 28/37

Here, 𝑁𝑁 is the number of measurements since the last read to this statistics value. In
case a measurement has not yet been performed since the last read to this statistics
value, the standard deviation will be 0.

Examples:
float examples
M V SSDM,prev N SSDM σ
1536.2 1471.78 12.5 87 12.5 + (1471.78 − 1536.2)2

= 4162.44 �4162.44
87

= 6.92

-
461.01

10.57 2314.78 263 2314.78 + (10.57 − (−461.01))2

= 224702.47 �224702.47
263

= 29.23

X X X 0 X 0

2.4 Register list

This paragraph explains how the Modbus register list supplied with the instrument should
be interpreted and used. Each sub-paragraph explains a column of the Modbus register
list and provides examples where appropriate. Note that all values in the tables below are
in hexadecimal notation.

Register list columns
Column name
Register name
Register address
Register type
Register description
Enumeration
Default value
Persistent
Unit

2.4.1 register_name

All registers in the Modbus register list have a defined register name. These names give
summarized explanation on the data behind the register or the action can be started by
reading or writing to the register. For a more detailed explanation of the register, the
register description column is used.

The register name column has no further function and is not relevant when composing a
Modbus request.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 29/37

2.4.2 register_address

All registers in the Modbus register list have a defined register address. This value should
be used as the read or write start address when composing a Modbus request to a
register from the Modbus register list. The values in the register column are presented in
16-bit hexadecimal notation.

Example

An example is given below on how to compose a Modbus request using the register
address value from the Modbus register list. Consider a Modbus register with register
address 0x1234 for a device with device address 1.
The following example shows how to compose a Modbus read request using function code
0x03 (Read Holding Registers) to read the data for the above described register. This
example assumes that the data is 32-bit, so the number of registers field in the request
will be set to 2.

Read request
Device
address

Function code Read start
address

No. registers CRC

0x01 0x03 0x1234 0x0002 0xC0BC

2.4.3 register_type

All registers in the Modbus register list have a type. This defines the datatype of the data
or configuration option that the register represents. Since datatypes can have different
sizes, the register type also defines the amount of 16-bit Modbus registers that have to
be interacted with to fully read or write the value that the register represents. The
following table gives the full name for all datatypes as they are presented in the
register_type column as well as the size in 16-bit Modbus registers.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 30/37

REGISTER DATA TYPES

REGISTER
TYPE

DATA TYPE REGISTER
(BYTE) COUNT

DESCRIPTION

bool bool 1 (2) A single value signaling TRUE or FALSE
u16 u16 1 (2) Unsigned 16-bit integer
i16 i16 1 (2) Signed 16-bit integer
u32 u32 2 (4) Unsigned 32-bit integer
i32 i32 2 (4) Signed 32-bit integer
u64 u64 4 (8) Unsigned 64-bit integer
string32 string32 16 (32) UTF-8 encoded, 32 character string

with 2 characters per Modbus register.
The byte order is ‘BADCFE’.

float float 2 (4) Single-precision floating-point format
(IEEE 754 binary32).

statistic statistic 8 (16) A struct containing 4 floating point
numbers corresponding to the
minimum, maximum, average and
standard deviation. Accumulation is
reset upon reading.

2.4.4 register_access

All registers in the Modbus register list have a defined register access field. This field
defines if the register data can be read and/or written. The format of this field is
<ReadAccess><WriteAccess>.

<ReadAccess> indicates if a register accepts a Modbus read request by being defined as
either an R, indicating that the register does accept a Modbus read request, or a -,
indicating that the register does not accept a Modbus read request.

<WriteAccess> indicates if a register accept a Modbus write request by being defined as
either a W, indicating that the register does accept a Modbus write request, or a -,
indicating that the register does not accept a Modbus write request.

In practice, Modbus registers will always accept a read request. This leads to the set of
supported access combinations defined in the following table.

Register access options
Register access Description
R- The register accepts Modbus read requests. The register

does not accept Modbus write requests.
RW The register accepts Modbus read requests. The register

accepts Modbus write requests.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 31/37

Not adhering to the register_access field, i.e. sending a Modbus write request to a
register that only accepts Modbus read requests, will result in the device responding with
exception code 0x04.

2.4.5 register_description

All registers in the Modbus register list have a register description. This field contains a
short explanation about the corresponding register. This description can contain
information such as the unit of data that can be retrieved using the register, i.e.
Instrument temperature in °C. Other type of registers might have a description
containing the action that will be taken when a Modbus request is send to that register,
i.e. Soft restart.

The register description column has no further function and is not relevant when
composing a Modbus request.

2.4.6 enumeration

Registers in the Modbus register list can have a defined enumeration in the enumeration
column. An enumeration is a collection of named elements in which each element
corresponds to a unique number in that collection.

The format used in the Modbus register list for a named element and corresponding
number within an enumeration is <number>: <named_element>. The number will always
be presented in decimal notation.

A register in the Modbus register list with a defined enumeration will always be of the
type u16.

Registers in the Modbus register list with a defined enumeration will only accept Modbus
write requests containing a value from this enumeration as the write data. A write
requests to these registers containing a value not specified in the enumeration will result
in the device responding with Modbus exception code 0x04.

Similarly, registers in the Modbus register list with a defined enumeration will always
respond to a Modbus read request with a value from this enumeration.

Examples

A couple examples are given below on how to use a defined enumeration from the
Modbus register list to compose the data for a write request and to decode the data from
a response to a read request to such a Modbus register.

Consider a register with address 0x1234 and with the following defined enumeration:

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 32/37

0: OptionA
1: OptionB
5: OptionC
10: OptionD

The following example shows how to compose a Modbus write request to write OptionC
from the above defined enumeration to the corresponding register using function 0x06
(Write Single Register) to a device with device address 1. The above defined
enumeration shows that element OptionC corresponds to the number 5, or 0x0005 in
16-bit hexadecimal notation.

Write request
Device
address

Function code Write address Write data CRC

0x01 0x06 0x1234 0x0005 0x0D7F

The following example shows how to decode a Modbus response to a read request to this
register using function 0x04 (Read Input Register) and a device with device address 1.
This request can result in the following response:

Response to read request
Device
address

Function code Read data CRC

0x01 0x04 0x000A 0xC01E

The device responded with 0x000A, or 10 in decimal notation, as data. Looking at the
above defined enumeration, 10 corresponds to OptionD.

2.4.7 Default value

This column lists the factory default value of the register, where applicable.

2.4.8 Persistent

If a programmed value is saved across instrument power cycles and soft-reboots, the
value in this column is True. Otherwise, if the value is not saved across power cycles and
reboots, the value is False.

2.4.9 Unit

If the value in a register has a physical unit, the unit is given in this column. If a value
does not have a specific unit, for instance when a value is just a number, or a string, the
unit is listed as Undefined.

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 33/37

Appendix A – Pseudocode conventions

Throughout the explanation of the various register data types, pseudocode is used when
explaining how to work with the data types, or how to convert the received Modbus data
to the intended value. The conventions used throughout this chapter are listed below.

Pseudocode

pseudocode is placed in blocks formatted like this

IF, THEN, ELSE, OR, AND, WHILE, RETURN are keywords used to signify common
programming language functions. These keywords are always capitalised.
Common operators are +, -, *, /, ^ (raise to the power of), << (bitwise left-shift), and >>
(bitwise right-shift). Comparison is made with < (smaller than), > (larger than), <=
(smaller than or equal), >= (larger than or equal), == (exact same value). Assignment is
made by := to avoid confusion between = and ==. FLOOR is used to indicate a value
should be rounded down to the nearest integer value. CEIL is used to indicate a value
should be rounded up to the nearest integer value.

Explanatory comment in the code are placed between /* and */, like this: /* this is a
comment*/

A value prepended with 0x is in hexadecimal notation, a value prepended with 0b is in
binary notation. Arrays of a data type are denoted as DATA_TYPE[N] where DATA_TYPE is
the data type and N is the number of items in the array. Positions in the array are
counted from 0, meaning that the first item in the array is found at position 0 and the
last item in the array at position N-1. For example:

Array example
Notation Meaning Last item at position
U16[4] 4 items of data type u16 3
FLOAT[16] 16 items of data type float 15

The notation content{23:14} denotes that bit 23 downto (and including) bit 14 from a
value are used to construct a value as if the least significant bit (bit 14 in this case) were
bit 0. This means that content would be bit-masked and right-shifted to obtain the
correct value, as shown here for content{23:14}:

Pseudocode

/* using a range of bits from a value */

result := (content AND 0x00FFC000) >> 13

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 34/37

The AND operation with 0x00FFC000 (which is 0b00000000111111111100000000000000 in
binary, note that bits 23 downto 14 are 1) removes all bit content outside of the desired
bit range. Right-shifting with >> places the least significant bit of the desired range in the
position that represents a value of 1. The result of this combined operation then is the
desired value.

Modbus requests return the content of 16-bit registers, most often received as a series of
bytes. The received bytes need to be combined to either 16-bit or larger (in the case of
for instance a 32-bit value) values. Examples how to combine received bytes to 16-bit
and 32-bit values are given below. Note how bytes are left-shifted to the correct bit
position, then combined by using a bitwise OR.

Pseudocode

/* combining bytes to multi-byte values */

/* 16-bit */
result_16 := (received_byte_0 << 8) OR received_byte_1

/* 32-bit */
result_32 := (received_byte_0 << 24) OR (received_byte_1 << 16) OR
(received_byte_2 << 8) OR received_byte_3

/* 64-bit */
result_64 := (received_byte_0 << 56) OR (received_byte_1 << 48) OR
(received_byte_2 << 40) OR (received_byte_3 << 32) OR (received_byte_4 <<
24) OR (received_byte_5 << 16) OR (received_byte_6 << 8) OR
received_byte_7

Conversely, creating byte values from a single 16-bit or 32-bit value to ready the value
for transmission is done as shown below. Note that the most significant part of the value
is stored in the byte with the lowest number (i.e. that is transmitted first).

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 35/37

Pseudocode

/* splitting values into multiple bytes */

/* 16-bit */
byte_0 := (value AND 0x0000FF00) >> 8
byte_1 := (value AND 0x000000FF)

/* 32-bit */
byte_0 := (value AND 0xFF000000) >> 24
byte_1 := (value AND 0x00FF0000) >> 16
byte_2 := (value AND 0x0000FF00) >> 8
byte_3 := (value AND 0x000000FF)

/* 64-bit */
byte_0 := (value AND 0xFF00000000000000) >> 56
byte_1 := (value AND 0x00FF000000000000) >> 48
byte_2 := (value AND 0x0000FF0000000000) >> 40
byte_3 := (value AND 0x000000FF00000000) >> 32
byte_4 := (value AND 0x00000000FF000000) >> 24
byte_5 := (value AND 0x0000000000FF0000) >> 16
byte_6 := (value AND 0x000000000000FF00) >> 8
byte_7 := (value AND 0x00000000000000FF)

http://www.hukseflux.com/

Programming manual industrial series pyranometers v2401
 36/37

http://www.hukseflux.com/

© 2024, Hukseflux Thermal Sensors B.V.
 www.hukseflux.com

Hukseflux Thermal Sensors B.V. reserves the right to change specifications without notice.

http://www.hukseflux.com/

	Cautionary statements
	Contents
	List of symbols
	Introduction
	1 Modbus over RS-485
	1.1 Serial communication settings
	1.2 Modbus communication settings
	1.3 Modbus request structure
	1.3.1 Modbus frame

	1.4 Supported Modbus function codes
	1.4.1 0x03 - Read Holding Registers
	1.4.2 0x04 - Read Input Registers
	1.4.3 0x06 - Write Single Register
	1.4.4 0x10 - Write Multiple Registers
	1.4.5 0x08 - Diagnostics

	2 Hukseflux Modbus registers
	2.1 Register access
	2.2 Register addresses
	2.3 Register data types
	2.3.1 bool
	2.3.2 u16
	2.3.3 i16
	2.3.4 u32
	2.3.5 i32
	2.3.6 u64
	2.3.7 string32
	2.3.8 float
	2.3.9 statistic

	2.4 Register list
	2.4.1 register_name
	2.4.2 register_address
	2.4.3 register_type
	2.4.4 register_access
	2.4.5 register_description
	2.4.6 enumeration
	2.4.7 Default value
	2.4.8 Persistent
	2.4.9 Unit

	Appendix A – Pseudocode conventions

